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LETTER TO THE EDITOR 

Concentration anisotropy and directionality in the 
dielectric breakdown problem on a square lattice 

F F Barbosa and S L A de Queiroz 
Departamento de Fisica, Pontificia Universidade Catdlica do Rio de Janeiro CP 38071, 
22453 Rio de Janeiro RJ, Brasil 

Received 14 December 1988 

Abstract. We propose a small-cell position-space renormalisation group approach to study 
the effects of concentration anisotropy and directionality in the dielectric breakdown prob- 
lem on a two-dimensional square lattice. We show that, in spite of the anisotropies inherent 
in the problem, concentration anisotropy is irrelevant (in the renormalisation group sense) 
both for the undirected and directed cases, just as occurs in normal percolation. For respect- 
ive bond concentrations x and y along the Cartesian directions, we remark on relevant 
features of the phase diagram of insulating and conducting phases in the xy plane. For x = 
y = p ,  and V, the breakdown voltage, the phase diagram in thep-V, plane displays a line of 
fixed points on the p = 1 axis, whose physical meaning is discussed. Directional effects are 
included via 'directed insulators', an approximation which results in the appearance of a 
mixed (non-conducting) phase consisting of conductors and 'mismatched' directed insu- 
lators. 

The dielectric breakdown of a metal-loaded dielectric material, for example, is a macro- 
scopic phenomenon which takes place through a series of microscopic failures (see e.g. 
Beale and Duxbury 1988). When a metal-loaded sample of linear dimension L is 
subjected to an electric field, the potential difference across the material will concentrate 
in the spatial regions filled with dielectric. Thus, for a given externally applied potential 
difference V ,  the local fields within the dielectric may be substantially higher than if the 
material were not metal-loaded. If the dielectric can only withstand a certain maximum 
local field before failing and becoming a conductor, raising the external potential dif- 
ference to a breakdown value V ,  will induce failure, initially at the points where the local 
field is highest, and propagating until a macroscopic breakdown occurs by the formation 
of a conducting path through the material. 

Assuming the metallic impurities to be randomly distributed, standard percolation 
theory (Essam 1980, Stauffer 1985) tells us that the mixture will be conducting for 
impurity concentrations c > cc, the percolation threshold. As c-+ c, from below, the 
breakdown electric field E,(=V,/L) vanishes as (c,  - c)". It has been proposed (Dux- 
bury et aZ1986, Beale and Duxbury 1988) that t' = v ,  the correlation-length exponent 
of the percolation problem. Qualitative differences arise depending on whether the 
problem is defined on a lattice or in the continuum (Lobb et a1 1987 and references 
therein, Chakrabarti et a1 1988); here, we shall concentrate on lattice models, in which 
the bonds can be occupied either by an insulator (dielectric) and probabilityp = 1 - c ,  
or by a conductor (metal) with probability c. Note that macroscopic insulation requires 
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that both (a) insulatorspercolate and (b)  conductors do not percolate; also, at the critical 
point of interest c = c, the statistics of insulator clusters will not, in general, be the 
same as at the insulator percolation point p = p ,  (which is not relevant for the present 
problem). The square lattice, with which we shall deal here, is then an exception because 
in this case the bond percolation threshold equals 4 exactly (Essam 1980). 

For a given concentration of conductors below cc, the breakdown voltage will depend 
strongly on the geometrical distribution of metallic elements: the ‘most critical defect’ 
(i.e. the one for which the breakdown voltage is the smallest) (Duxbury et a1 1986, Beale 
and Duxbury 1988) will have the shape of a line parallel to the applied field. This is true 
for any space dimensionality d;  in the similar problem of random fuse networks (which, 
in d = 2 is analogous to the dielectric breakdown problem discussed here (Beale and 
Duxbury 1988)) the most critical defect is a (d  - 1) dimensional hyperplane of absent 
bonds (insulators, in that case) perpendicular to the applied field (Duxbury et a1 1986, 
1987). On the other hand, a line of metallic defects perpendicular to the applied field 
will have a negligible effect in lowering the breakdown voltage (relative to that for the 
pure dielectric). This inherently anisotropic feature of the problem leads one to ask how 
the characteristics of dielectric breakdown will change if additional anisotropies, such 
as concentration anisotropy or bond directionality are present. Apart from its interest 
as a problem in lattice statistics in its own right, this competition of anisotropies may 
simulate relevant experimental situations in the similar problem of mechanical fracture 
(see e.g. Sahimi and Goddard 1986 and references therein for typical problems in this 
field). For example, while the external stress in the mechanical problem is analogous 
the voltage in dielectrics, the gravitational field may provide a directional bias, and 
concentration anisotropies may arise in connection with anisotropic shapes of grain 
boundaries. 

In what follows, we develop a small-cell position-space renormalisation group (PSRG) 
to deal with concentration anisotropy and directional effects in the dielectric breakdown 
problem on a two-dimensional square lattice. We make use of the physical ideas which 
form the ‘minimum gap approximation’ (Stinchcombe et a1 1986), in which it is assumed 
that the breakdown voltage in a configuration can be approximated by the minimum 
number of insulating bonds (gap) in all the paths that cross the configuration from top 
to bottom. Chakrabarti et a1 (1987) treated the isotropic, undirected problem within this 
approximation both in d = 2 and 3, also in a small-cell PSRG scheme, with fairly good 
results as regards critical exponents and concentrations. They used in d = 2 the H- 
shaped cell of figure l(a) (and its counterpart in d = 3) which has proved reliable in PSRG 
studies of standard percolation (see e.g. Reynolds et a1 1980 and references therein). 
However, this type of cell is not suitable for taking into account anisotropy effects, at 
least in standard percolation, as shown by Oliveira (1982) for the anisotropic undirected 
problems and by Chame et a1 (1986) for the directed case. These authors show that the 
H-shaped cell gives excessive weight to one-dimensional paths, and this causes the 
crossover between one- and two-dimensional behaviour to be wrongly predicted as 
taking place at the isotropic point (instead of at the extreme anisotropic limit, as is known 
to be true for standard percolation). To remedy this, they propose ‘tilted’ cells (depicted 
in figures l (b)  and l(c)), in which it is argued that one- and two-dimensional paths are 
treated more equitably. Indeed, with this scheme the correct crossover behaviour is 
obtained. 

Here, we shall use the cells proposed by Oliveira (1982) and Chame et a1 (1986), with 
suitable adaptations for the dielectric breakdown problem (see below). The underlying 
assumption is that, as in normal percolation, no undue privilege is given either to 
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Figure 1. (a) H-shaped cell; for x ’ ,  entries are at 
A and B, exits at E and F; for y ’ ,  entries are at A 
and C, exits at G and H. (b) ‘Tilted’ cell for the 
undirected problem; for x ’ ,  entries are at A and 
B,exitsatGandH;fory’,entriesareatCandD, 
exits at A’ and B’ (Oliveira 1982). (c) ‘Tilted’ cell 
for the directed case; entries and exits for x ’  and 
y’ are the same as in (b ) ;  directional constraints 
must be satisfied for ‘percolating’ paths (Chame 
et a1 1986). 

one- or to two-dimensional paths; thus the crossover behaviour emerging from our 
calculations will be related to the actual physical properties of the problem in study, not 
to an a priori bias. 

The specific features of dielectric breakdown are incorporated as in Chakrabarti et 
a1 (1987): for given probabilities of occupation of horizontal (x) or vertical (y) bonds by 
insulators, we count for the renormalised x’ and y ’ all configurations which span the cell 
(that is, cross it from ‘entry’ to ‘exit’ (see caption of figure 1) through only insulating 
bonds), and in which the conducting bonds (present with respective probabilities (1 - x) 
and (1 - y)) do not span the cell. If, in the unrenormalised lattice, an insulator bond has 
breakdown voltage V,, the breakdown voltage for a renormalised bond e.g. along thex 
direction is given through the quantity X’V;, for which one sums over the contributions 
given by all configurations obeying the above rules. For each configuration with an 
intrinsic probabilityf(x, y), its contribution is (nVb/6’)f(x, y), where n is the number of 
insulating bonds in the minimum gap path of the configuration, and 6’ is the number of 
bonds in the shortest path crossing the cell (b’ = 2 in the cell of figure l(a), and 3 in those 
offigures l(6)and l(c)). Inotherwords,itisactuallytheelectricfieid(intensivequantity) 
which is being scaled, not the potential difference (extensive). This is already implicit in 
the treatment of Chakrabarti et aZ(1987). Since, by construction, x’ = R ( x ,  y )  and y’ = 
R(y, x) (see figure 1) the phase diagram obtained in the xy plane from the iteration of 
the recursion relations is bound to be symmetric about the x = y line. The correlation- 
length exponent at the non-trivial fixed points is given by Y = In 6/ln A>, where b is the 
scaling factor (b  = 2 for the cell of figure l(a),  6 = 3 for those of figures l(6) and l(c), 
see e.g. Chame et a1 1988 and references therein), and A> is the eigenvalue of the 
linearised recursion relations, related to the eigenvector pointing outward from the 
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critical surface. With AV = aVL/dV, at the fixed point, the critical exponent t' is given 
by (Chakrabarti et a1 1987) 

t' = -1n Av/ln A>. (1) 
For the undirected anisotropic problem, we have the diagram depicted schematically 

in figure 2(a), about which we make the following remarks in order. 

(i) The flow direction along the critical line ACB is from the extreme anisotropic 
points A and B, towards the isotropic point C; thus, concentration anisotropy is irrel- 
evant (in the renormalisation-group sense) in dielectric breakdown. 

(ii) The location of C is x = y = 0.666, compared to the expected 1; this is a small- 
cell effect related to the restrictions imposed by the condition that conductors do not 
percolate. 

(iii) At  C, v = 1.434, t' = 0.968; these compare respectively with v = 4 (den Nijs 
1979) and t' = 1.46 k 0.22 (Beale and Duxbury 1988) and t' = 1.31 k 0.05 (Manna and 
Chakrabarti 1987). Although it is tempting to say that our results point towards t' # v ,  
contrary to the reasoning of Beale and Duxbury (1988), we must refrain from attaching 
great significance to numerical values from small-cell PSRG calculations (even though 
our estimate for v isquitegood). Note also that, sincep, = 4, we are justifiedincomparing 
our result for v of the insulating clusters with values obtained for critical percolation 
clusters; as remarked above, it is only for this special case that the critical point of 
conducting clusters (which is the relevant feature) coincides with that of the insulators. 
We only have to recall that v is the same on both sides of the transition (see e.g. Stanley 
1971), which is implicit in scaling renormalisation-group theories. 

(iv) At the one-dimensional critical points A and B, the crossover exponent q = 1 
exactly, as in standard percolation, and t' = 1, which again is an exact result (Stinch- 
combe et a1 1986). 

In figure 2(b) we have restricted ourselves to the isotropic problem ( x  = y = p )  
and have worked out the phase diagram in the p-v,/L plane. For p < p c  (in our 
approximation, p c  = 0.666, see above) all lines flow toward the empty lattice point, in 
agreement with the fact that the system will be conducting, and insulating clusters do 
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Figure 2. (a) Schematic phase diagram for insulating and conducting phases in thexy plane. 
For the undirected problem, C is at x = y = 0.666; for the directed case, C is at x = y = 
0.663. ( b )  Schematic phase diagram and flow lines in the p-V, plane (see text). For the 
undirected problem,p, = 0.666; for the directed case,p, = 0.663. 
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not percolate; at p = p c  the flow is toward @, vb/L) = @,, O), since at this point the 
system is both scale-invariant and unable to withstand any finite field without breaking 
down; forp  > p c  there is a line of fixed points at p = 1 which attracts all points as follows 
(See figure 2(b)  for some schematic trajectories): for given vb, the closer a point is 
initially to the pure limit p = 1, the closer still to vb/L = 1 it will eventually become in 
reaching the line of fixed points. This illustrates that the breakdown voltage increases 
as the concentration of metallic defects (1 - p )  goes to zero, as is expected intuitively. 
Similar results have been obtained, in a (somewhat different) PSRG scheme, for the 
magnetisation versus temperature diagram of Potts ferromagnets (Chame et a1 1988: 
their figure 2 is analogous to our figure 2(b), with the equivalence magnetisation = vb/ 

L ;  temperature = 1 - p ) .  Note that there is no discontinuity in the flow lines as the point 
(p, Vb/L)  = (1 , l )  is approached: this shows that our calculations do not reproduce the 
finite jump in vb/L (from 1 to an) when one single conducting impurity is added to an 
otherwise pure dielectric (Beale and Duxbury 1988). The reason for this is that the scaling 
assumptions underlying the renormalisation group (RG) are tantamount to assuming 
averaged translational invariance throughout the system; thus, the one-impurity prob- 
lem is viewed by the RG as identical to that of exactly zero defects. It is also worth noting 
that, once again owing to scaling assumptions, the RG is not able to distinguish between 
theinitial breakdownvoltage V 1  (that for which the first bondcollapses) and the complete 
breakdown voltage vb (the one for which a conducting path throughout the material is 
formed). In this case, Beale and Duxbury (1988) have found that both quantities have 
essentially the same value, although there is a clear conceptual difference between them. 
In the random fuse network, however, the analogous breakdown voltages V 1  and VI, 
may differ for systems with a continuous distribution of breakdown strengths (Duxbury 
et a1 1987). 

Directionality effects can be included in a variety of ways; here, we have chosen what 
seemed to us the simplest one, namely via ‘directed insulators’. By this we mean a bond 
which, when submitted to a potential difference (in a given direction) greater than the 
threshold vb, will break down and become a diode (conducting current only in one 
direction). If the potential difference is along the opposite direction, the bond is assumed 
never to break down, no matter how strong the potential is. Thus on a square lattice we 
can have directed insulators along x bonds (with concentration x), along y bonds (with 
concentration y )  or conductors (with overall concentration 1 - x - y ) .  ‘The conductors 
are assumed to carry current both ways (undirected). For the cell of figure l(c) we can 
then establish recursion relations for the renormalised concentrations x’ , y ’ and for the 
renormalised breakdown voltage VL. The configurations counting f o r d  (or y’) are those 
in which it is possible to cross the cell from entry to exit (see caption of figure 1) only 
through insulating bonds, now respecting directional constraints (see e.g. Tsallis and 
Redner 1983 for a discussion of this point), and in which the conducting bonds do not 
span. The recursion relation for Vb is obtained through considerations similar to those 
for the undirected case (see above). 

The phase diagram in the xy plane in this case is qualitatively similar to that obtained 
for the undirected problem (figure 2(a)). The following comments should be noted. 

(i) We find that concentration anisotropy is irrelevant for dielectric breakdown with 
directed insulators; this is the same as for the undirected problem, and for normal 
percolation, both undirected (Oliveira 1982) and directed (Chame et a1 1986). 

(ii) Theisotropiccriticalpoint Cisatx = y = 0.668;comparewithpC = 0.643 k 0.002 
(Blease 1977); Chame et a1 (1986) obtainp, = 0.5021 for the same cell, in the problem 
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of normal directed percolation. Note that betweenp = t (at which the concentration of 
isotropic conductors 1 - p becomes critical) and p = 0.643, one has an infinite cluster 
of ‘directed insulators’ with mismatched directionalities; since the insulators’ breakdown 
voltage along the ‘wrong’ direction is assumed infinite, macroscopic conduction cannot 
take place, and the critical point is at the directed insulators’ percolation threshold. 
Thus, there is a subtle difference compared with undirected dielectric breakdown. 

(iii) At C, v = 1.433, t’ = 0.958; compared with v = 1.734 t 0.02 (Kinzel 1983). 
The estimate oft’  is very close to that for the undirected problem; in an experiment with 
resistors and diodes (which is, however, not equivalent to the situation discussed here), 
Benguigui (1988) has found t’ = 1.1 +- 0.3, also close to values reported for the undi- 
rected case. 

(iv) As in the undirected case, the crossover exponent 9 = 1 (see Chame et a1 1986) 
and t‘ = 1 at the one-dimensional critical points A and B. 

For x = y = p ,  the phase diagram in the p-V, plane is shown schematically in figure 
2(b), and its features are entirely similar to those of the corresponding diagram for the 
undirected problem. 

Since the H-shaped cell of figure l(a) does not give rise to systematic errors for 
isotropic cases, we have used it, with adaptations to include bond directionality (Oliveira 
1983), for the isotropic ‘directed insulator’ breakdown problem. For scaling factors b = 
2 and 3 our results are, respectively,p, = 0.726 and 0.663; v = 1.398 and 1.381; and t’ = 
0.745 and 0.821. Apart from the slight decrease in v ,  these results seem to be consistent 
with those reported above. 

In summary, we have proposed a small-cell PSRG to study the effects of concentration 
anisotropy and directionality in the dielectric breakdown problem on a two-dimensional 
square lattice. We have shown that, in spite of the anisotropies inherent in the problem, 
concentration anisotropy is irrelevant (in the RG sense), both for the undirected and 
directed cases, just as occurs in normal percolation. Relevant features of the phase 
diagrams in both the xy and p-V, planes have been discussed, and remarks have been 
made on the peculiarities of scaling theories when applied to breakdown problems. 
Directional effects have been included via ‘directed insulators’, an approximation which 
results in the appearance of a mixed (non-conducting) phase of conductors and ‘mis- 
matched’ directed insulators. 

We thank P M Oliveira and R Riera for useful remarks, and P M Duxbury for sending 
his results prior to publication. This work was supported in part by FINEP, CAPES and 
CNPq . 
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